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Abstract

Investigation on critical flashing flow of initially subcooled water in convergent–divergent nozzles is carried out in this paper. A two-dimensional
axial symmetric model is developed. In this model, the explosive flashing process immediately downstream the throat is modeled as an oblique
evaporation wave, and the velocity direction change of the supersonic flow downstream the oblique evaporation wave is regarded to be resulted by
an oblique shock wave. The further fluid expansion in the divergent section is assumed to be in Isentropic Homogeneous Equilibrium (IHE) except
near the throat. The results show that the pressure immediately downstream the throat predicted by Abuaf’s model is very close to the experimental
result, about 4% deviation from Akagawa’s tested value. Non-homogeneous equilibrium region exists downstream the oblique evaporation wave
near the throat in the divergent section. The length of the non-homogeneous equilibrium region is increased as the inlet subcooled degree is
increased. The pressure profile predicted by the model agrees very well with the tested profile of Akagawa except in the non-homogeneous
equilibrium region near the throat.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In many situations, a pressurized liquid may rapidly ex-
pand into a low pressure environment. For example, refrigerants
flowing through expansion devices (such as valve, capillary,
short tube, nozzle, etc.) in refrigeration systems and disastrous
industrial rupturing accidents of pressurized liquefied gas stor-
age tank. If the low environmental pressure is low enough, the
liquid will undergo a fast phase transition process and the mass
flow rate will not be increased with the decreasing back pres-
sure any more, i.e. the critical flashing flow.

The critical mass flow rate is the most important character
of the critical flashing flow. The investigation results of Thomp-
son et al. [1,2] have revealed that because of the different wave
propagating speeds of liquid and two-phase mixture, rapid adia-
batic expansion of liquid may produce a superheated metastable
state and will make the evaporation discontinuity. Many other
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investigations [3–11] have also found the phenomenon. Sev-
eral reviews of the literature pertaining to critical discharge of
flashing flows, including those by Hutmacher [12], Hsu [13],
Saha [14], and Isbin [15], have generally found that models
based on assumptions of Isentropic Homogeneous Equilibrium
(IHE) under-predict the critical discharge rate. The differences
are attributed to the presence of non-equilibrium resulting in
the superheated liquid. In order to evaluate this effect, Alam-
gir et al. [3] investigated the rapid blowdown depressurized hot
water and suggested a semi-empirical formula to predict the
pressure undershoot (or the liquid superheated degree) before
flashing occurrence. On the basis of Alamgir et al., Jones [4]
suggested an equation to predict the pressure undershoot at the
throat of convergent–divergent nozzles. Further, Abuaf et al. [5]
improved Jones’s method and suggested a unified theory for the
calculation of critical mass flux, whose accuracy is within 5%.

Sometimes, researchers are very interested to know how the
pressure of the critical flashing flow is distributed along the flow
direction, especially in what state the fluid is at the exit. In order
get the purpose, the models of bubble formation and growth are
needed. On the basis of the mass, momentum, and energy con-
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servation laws, Elias and Chambre [16], Richter [17], Ardron
[18], Shin and Jones [19], and Blinkov et al. [20] respectively
established different two-phase fluid models to investigate the
critical flow in nozzles or pipes. Pinhasi [21] gave a detailed
review of the modeling of flashing two-phase flow. These mod-
els are all based on the step proceeding method. The selection
of the bubble growth and formation models will distinctively
influence the results.

Since flashing is delayed when initially subcooled liquid
rapidly expands, where is the flashing inception (the intense nu-
cleation point) located? Schrock et al. [6] investigated the flash-
ing inception point of initially subcooled water in convergent–
divergent nozzles, and found that the flashing inception point is
located immediately upstream the throat and nearly has nothing
to do with the initially inlet subcooled degree. Abuaf et al. [5]
suggested that the flashing inception is located at the minimal
area plane (throat) of the convergent–divergent nozzle when the
flow is stable. Although there are evidences that the bubbles are
created in front of the nozzle throat [16–19], the result of Shin
and Jones [19] shows that the computed maximum throat void
fraction is less than 1%, which supports Abuaf’s result [5]. On
the basis of this fact, Schrock et al. [6] suggested a two-step
model to investigate the pressure profile in the convergent–
divergent nozzles, and found that it only could give the pressure
profile in the divergent section with trend and magnitudes sim-
ilar to the tested data.

Superheated liquid will explosively evaporate in a narrow
and observable region, i.e. evaporation wave [7–9]. Simoes-
Moreira [9] established the evaporation wave theories (normal
evaporation wave theory and oblique evaporation wave the-
ory) and gave the choking condition for the normal evaporation
wave. Employing the normal evaporation wave theory, he in-
vestigated the highly expanded flashing liquid jets [10] and
explained the pressure drop and flashing mechanism in refrig-
erant expansion devices [11]. Simoes-Moreira [10,11] got the
critical mass flux through experiments and regarded the explo-
sive evaporation process as a normal evaporation wave which
takes the shape of an equivalent hemisphere. He did not suggest
how to calculate the critical mass flux and the liquid super-
heated degree immediately upstream the evaporation wave for
the given inlet stagnation conditions. Documentaries [9–11] of
the evaporation of liquid jet discharging into a low pressure en-
vironment using short-duration photographic techniques have
revealed that the liquid core in the evaporation wave process
takes the shape of a cone, and the velocities immediately up-
stream and downstream the evaporation wave are not normal
to the evaporation surface. On the basis of this fact, Simoes-
Moreira [9] established the oblique evaporation wave theory. In
his oblique evaporation wave theory, he introduced three prop-
erties of the oblique evaporation wave similar to a regular com-
pression shock wave, which are: (1) the relative velocities are
coplanar with the vectors normal to the wave front, (2) the tan-
gential velocity component is invariant across the wave, (3) the
stagnation specific enthalpy is invariant in a stationary oblique
evaporation wave. He also investigated the relationship between
the velocity turning angle and the evaporation wave angle. But
the superheated degree upstream the evaporation wave, which
he did not suggest how to calculate for the given inlet stagnation
conditions, must be known beforehand in the characteristics
calculation of the oblique evaporation waves.

In this paper, in order to investigate the pressure distribu-
tion along the flow direction in a convergent–divergent nozzle
and the fluid state at the nozzle exit, the authors assumed the
maximal mass flux normal to the evaporation wave surface is
the choked condition for flashing flow. Employing the oblique
evaporation wave theory of Simoes-Moreira, the behaviors
of initially subcooled liquid flashing flow in the convergent–
divergent nozzles are investigated.

2. Model description

2.1. Oblique evaporation wave in convergent–divergent
nozzles

As stated in introduction, the initially subcooled liquid is ac-
celerated in the convergent section of the nozzle, and owing to
the flashing delay, it becomes superheated at the throat. Then
abrupt evaporation occurs immediately downstream the throat,
and the superheated liquid begins to be turned into two-phase
mixture. The liquid core takes the shape of a cone and will
maintain for a distance downstream before disappearing. The
velocity of the two-phase mixture immediately downstream the
oblique evaporation wave is supersonic. The fluid behaviors are
shown in Fig. 1.

In order to solve evaporation wave’s parameters, some hy-
potheses are made as the following.

• The flow is stable. The flashing inception point (intense nu-
cleation point) is located at the throat.

• The pressure in liquid core downstream the throat is con-
stant, which is equal to the pressure at the flashing inception
point.

• The velocity direction of the liquid core is along the flow
axis.

• The thickness of the evaporation wave is neglected.
• The fluid immediately downstream the evaporation wave is

in mechanical and homogeneous equilibrium.

Fig. 1. Diagram of oblique evaporation wave in convergent–divergent nozzles.
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• The choked condition for flashing flow is the superficial
mass flux normal to the oblique evaporation wave surface
gets the maximum, i.e. dJ 2 = 0.

According to the properties of oblique evaporation wave
given by Simoes-Moreira [9], the laws of conservation of mass,
momentum, and energy can be respectively written as
u1

v1
sinβ = u2

v2
sin(β + θ) (1)

p1 + u2
1

v1
sin2 β = p2 + u2

2

v2
sin2(β + θ) (2)

h0 = h2 + 0.5u2
2 (3)

where, u is velocity (m/s), v is specific volume (m3/kg), β is
evaporation wave angle, θ is velocity turning angle, p is pres-
sure (Pa), h is enthalpy (J/kg). The subscripts 0, 1, 2 represent
the inlet stagnation condition, the state immediately upstream
the evaporation wave, and the state immediately downstream
the evaporation wave respectively.

The tangential velocity component is invariant across the
evaporation wave (Simoes-Moreira [9]). One can obtain the
relationship between the velocities immediately upstream and
downstream the evaporation wave.

u1 cosβ = u2 cos(β + θ) (4)

As shown in Fig. 1, the superficial mass flux normal to the
evaporation surface can be expressed as

J = u1 sinβ

v1
= u2 sin(β + θ)

v2
(5)

Combining Eqs. (2) and (5), one can obtain the following
equation analogous to that of normal evaporation waves [9].

J 2 = −p2 − p1

v2 − v1
(6)

The mathematical statement of maximal superficial mass
flux is given by dJ 2 = 0, under which the normal component
of the velocity immediately downstream the evaporation wave
reaches sonic. For a given upstream state 1, the condition of the
maximum mass flux applied to Eq. (6) results in

dv2

dT2
= − 1

J 2
C–J

dp2

dT2
(7)

where, JC–J is the superficial mass flux normal to the evapora-
tion wave surface at the Chapman–Jouguet (C–J) point in the
p–v diagram.

The state 1 immediately upstream the evaporation wave is
unknown. For the given stagnation conditions at the nozzle
entrance, in order to calculate the critical mass flux and the
oblique evaporation wave parameters, the relationship between
the stagnation condition and the state immediate upstream the
evaporation wave must be established. From the first hypothe-
sis in Section 2.1, it can be deduced that the flashing flows with
a subcooled inlet condition is single-phase liquid flow upstream
of the throat. From the Bernoulli equation for single phase in-
compressible fluid, one can have the following equation.

p0 − p1 = u2
1

2
(8)
2CDv1
Fig. 2. The velocity turning angle θ as a function of the evaporation wave angle
β for several specific volume ratios.

where, CD is mass flow rate coefficient which is constant for
incompressible single-phase flow.

Combining Eqs. (1) and (4), the following relationship be-
tween β and θ exists.

tan θ = sinβ cosβ

sin2 β + 1
v2/v1−1

(9)

In the evaporation wave angle range between 0◦ and 90◦
and knowing that the two-phase specific volume is necessar-
ily higher than the superheated liquid specific volume, that is,
v2/v1 > 1, the velocity turning angle θ has the same sign as the
evaporation wave angle β . The relationship is shown in Fig. 2.

The extreme conditions can be obtained by differentiating
Eq. (8) with respect to β and setting it to zero. J.R. Simoes-
Moreira [9] gave their relationship as the following.

θmax = π

2
− 2βmax (10)

2.2. The liquid superheated degree upstream the oblique
evaporation wave

Eqs. (1)–(4), (7) and (8) have 7 variables which are p1, u1,
p2, u2, x2, β , θ respectively. In order to solve the model, an-
other equation must be found. In the introduction, one knows
that Abuaf’s model can precisely predict the superheated de-
gree at the throat. Therefore, one can employ Abuaf’s model to
predict the pressure (p1) upstream the evaporation wave. Then
Eqs. (1)–(4), (7) and (8) can be solved.

According to Abuaf’s model [5], the pressure undershoot at
the flashing inception can be calculated by the following equa-
tion.

�p∗
Fi = �pFi

�pFio

= Max

⎧⎨
⎩

0

1 − 27

[
ū′2

u2
0

][
A

A0

]n

Fi
(11a)

where

n =
{

1.75, A/A0 � 1/6
1.4 A/A0 < 1/6

(11b)

where, A is flow area (m2); �PFi is pressure undershoot at
flashing inception (Pa); ρ is density (m3/kg).



1072 J. Liu et al. / International Journal of Thermal Sciences 47 (2008) 1069–1076
The flashing index is defined as Fi = ρlu
2/2�pFio. The tur-

bulent intensity
√

u′2/u0 can be assumed to be 0.072. The static
compression effects �pFio can be calculated by Alamgir and
Lienhar’s model.

�pFio = ps − pFi = 0.253
σ 1.5

√
kTc

T 13.73
r

√
1 + 14Σ0.8(

1 − vl

vg

) (12)

where, ps and pFi are the saturated pressure and the pressure
at the flashing inception respectively; σ is surface intension; k

is Boltzmann constant; Tc and Tr are the critical temperature
and the reduced initial temperature respectively; The subscripts
l and g represent the saturated liquid and the saturated vapor
respectively.

For stable flow, Abuaf [5] suggested that the static depres-
surization rate can be calculated by the following equation.

Σ = J 3
c

ρ2
l

· d[ln(A)]
dz

(13)

Since the flashing inception is located at the throat, the fluid
between the entrance and the throat is single phase fluid. The
mass flux can be calculated by Bernoulli equation. The critical
mass flux at the throat is given by

Jc = CD

√
2ρl(p0 − ps + �pFi) (14)

The pressure at the flashing inception can be calculated by

p1 = ps − �pFi (15)

2.3. Oblique evaporation wave model solution method

Because the pressure upstream the evaporation wave p1 can
be predicted by Abuaf’s model, Eqs. (1)–(4), (7) and (8) have
six variables, which are u1, p2, u2, x2, β , θ respectively. The
oblique evaporation wave can be solved.

From Fig. 1, the relationship between the critical mass flux
at the throat and the critical mass flux normal to the evaporation
wave surface can be given by

JC–J = Jc sinβ (16)

It can be incorporated into Eqs. (2), (3) and (7)

p1 + v1J
2
c sin2 β = p2 + v2J

2
c sin2 β (17)

h0 = h2 + v2
2J 2

c sin2 β

2 sin2(β + θ)
(18)

dv2

dT2
= − 1

J 2
c sin2 β

dp2

dT2
(19)

Combining Eqs. (9), (18) and (19), one can obtain

tan2 β = 2(h0 − h2) − J 2
1 v2

1

J 2
1 v2

2 − 2(h0 − h2)
(20)

Eq. (20) can be incorporated into Eq. (17)

p1 − p2 = 2(h0 − h2) − J 2
1 v2

1

(v2 + v1)
(21)

From Eq. (21), one can obtain

x2 = 2(h0 − hl2) + (vl2 + v1)(p2 − p1) − J 2
1 v2

1 (22)

2(hg2 − hl2) − (vg2 − vl2)(p2 − p1)
Combining Eqs. (19) and (20), one can obtain

dv2

dT2
= − v2

2 − v2
1

2(h0 − h2) − J 2
1 v2

1

dp2

dT2
(23)

Eqs. (22) and (23) only have two variables which are p2 and
x2 respectively. They can be solved with iteration method.

2.4. Oblique shock wave in divergent section

Owing to the velocity turning angle downstream the oblique
evaporation wave is usually not equal to the half of the noz-
zle divergent angle, the flow direction must be changed in the
divergent section because of the restriction of the nozzle wall.
From the knowledge of the compressible fluid dynamics, shock
wave must occur when supersonic flow changes its direction by
flowing through a concave surface. The behaviors of the fluid
downstream the evaporation wave are depicted in Fig. 3.

According to the oblique shock wave theory, the following
equations can be listed.

u2 cosω = u3 cos(ω − α) (24)
u2 sinω

v2
= u3 sin(ω − α)

v3
(25)

p2 + u2
2 sin2 ω

v2
= p3 + u2

3 sin2(ω − α)

v3
(26)

h0 = h3 + 1

2
u2

3 (27)

where, ω and α are the shock wave angle and the velocity turn-
ing angle downstream the shock wave respectively; The sub-
script 3 represents the state immediately downstream the shock
wave.

Eqs. (24)–(27) have five variables which are p3, x3, u3, α, ω

respectively. In order to solve the shock wave, another equation
should be found.

Combining Eqs. (26) and (27), one can obtain the relation-
ship between the shock wave angle ω and the velocity turning
angle α. The relationship is shown in Fig. 4.

tanα = (v2 − v3) tgω

v2 + v3 tg2 ω
(28)

Shown as in Fig. 4, similar to the oblique evaporation wave,
there is a maximum for the velocity turning angle. If the an-
gle between the velocity downstream the evaporation wave (u2)
and the nozzle wall is bigger than the maximal turning angle,

Fig. 3. The shock wave behaviors of fluid in the divergent section.
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Fig. 4. The relationship between the shock wave angle ω and the velocity turn-
ing angle α for several specific volume ratios.

the fluid immediately downstream the shock wave will not flow
along the nozzle wall in the divergent section. It can be assume
that if the angle between the velocity downstream the evapora-
tion wave (u2) and the nozzle wall is smaller than the maximal
turning angle, the velocity turning angle downstream the shock
wave is assumed equal to the angle between the velocity down-
stream the evaporation wave and the nozzle wall, i.e. the flow
is parallel to the nozzle wall. On the contrary, it is equal to the
maximal turning angle after the shock wave.

α =
{

φ if αmax > φ

αmax if αmax < φ
(29)

where, φ is the angle between the velocity downstream the
evaporation wave (u2) and the nozzle wall.

Then, the oblique shock wave can be solved.
Combining Eqs. (24), (27) and (28), one can obtain

tan2 ω = u2
2v

2
2 − 2(h0 − h3)v

2
2

2(h0 − h3)v
2
2 − u2

2v
2
3

(30)

Combining Eqs. (25), (26) and (30), one can obtain

p3 − p2 = u2
2 − 2(h0 − h3)

v2 + v3
(31)

Then

x3 = 2(h0 − hl3) + (p3 − p2)(v2 + vl3) − u2
2

2(hg3 − hl3) − (p3 − p2)(vg3 − vl3)
(32)

Eq. (32) has two variables which are p3 and x3 respectively.
Together with Eq. (29), the state immediately downstream the
oblique shock wave can be obtained.

2.5. The pressure profile in divergent section

After the shock wave, the fluid must undergo a sudden
condensing process in which the fluid must deviate from ho-
mogeneous equilibrium, i.e. non-homogeneous equilibrium
state must appear for a distance downstream the throat. To
the authors’ knowledge, owing to the complexity of the non-
homogeneous equilibrium region, no model can sufficiently
analyze it, so does the current model in this paper. Because it
is the fluid state at the nozzle exit that one is usually interested
in, the pressure in the non-homogeneous equilibrium region
downstream the throat is not investigated in this paper and it is
assumed to be equal to the pressure immediately downstream
the shock wave in this region. So the pressure profile in this
section must be distinctively deviated from the experimental
results.

The behavior downstream the non-homogeneous region in
the divergent section is the focus of our attention. It is assumed
that the fluid expansion downstream the shock wave is in Isen-
tropic Homogeneous Equilibrium (IHE).

s = s3 = constant (33)

From the mass and energy conservation laws, one can obtain

m0 = uz cos εAz

vz

(34)

hz = h0 − 1

2
u2

z (35)

Solving Eqs. (33), (34) and (35), one can get the pressure
profile downstream the non-homogeneous region in the diver-
gent section.

3. Results and discussion

3.1. Oblique evaporation wave

The pressures and the velocities immediately upstream and
downstream the evaporation wave varying with the inlet stag-
nation conditions are shown in Figs. 5 and 6. The pressures
are all increased as the inlet stagnation pressure is increased.
The velocity immediately upstream the evaporation wave is also
increased, and the velocity immediately downstream the evapo-
ration wave is slightly decreased first, and then, is increased,
as the inlet stagnation pressure is increased. There are pres-
sure and velocity jumps after the superheated liquid undergoes
an oblique evaporation wave. The pressure difference between
p1 and p2 is also increased as the inlet stagnation pressure is

Fig. 5. The pressures immediately upstream the evaporation wave p1 and down-
stream the evaporation wave p2 varying with the inlet stagnation conditions.
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Fig. 6. The velocities immediately upstream the evaporation wave u1 and down-
stream the evaporation wave u2 varying with the inlet stagnation conditions.

Fig. 7. The velocity turning angle θ and the evaporation wave angle β varying
with the inlet stagnation conditions.

increased. With the increasing initial inlet subcooled degree,
the pressures upstream and downstream the oblique evapora-
tion wave are all decreased. With the increasing initial inlet
subcooled degree, the velocity upstream the oblique evapora-
tion wave is increased and the velocity downstream the oblique
evaporation wave is decreased.

The velocity turning angle θ and the evaporation wave an-
gle β varying with the inlet stagnation conditions are shown in
Fig. 7. One can see that the velocity turning angle θ is extremely
larger than the evaporation wave angle, which is analogous to
the flashing jet into a big space [22]. It means that the fluid
immediately downstream the evaporation wave does not flow
along the nozzle wall and shock wave must occur downstream
the evaporation wave. With the increasing inlet subcooled de-
gree, the evaporation wave angle is decreased and the velocity
turning angle is increased.

3.2. Pressure profile

The velocity turning angle varying with the pressure imme-
diately downstream the shock wave is shown in Fig. 8. The
velocity turning angle is increased first, then is decreased, as the
Fig. 8. Velocity turning angle varying with the pressure immediately down-
stream the shock wave.

Fig. 9. Comparison between the pressure profiles calculated by the model and
the tested result of Akagawa [23].

pressure immediately downstream the shock wave is increased.
There is a maximal velocity turning angle after shock wave. As
the inlet subcooled degree is increased, the maximal velocity
turning angle is increased and the corresponding pressure im-
mediately downstream the shock wave is decreased.

The comparison between the pressure profiles calculated by
current model and the tested result of Akagawa [23] is shown in
Fig. 9. The pressure profile upstream the throat is nearly over-
lapped with the tested result of Akagawa, which validates the
mass flux calculated by Abuaf’s model. The pressure at the
throat calculated by current model is very close to Akagawa’s
experimental value, about 4% deviation from it, which vali-
dates the above stated behaviors immediately downstream the
throat. The pressure profile at the back of the divergent section
agrees very well with Akagawa’s experimental result. The pres-
sure at the exit calculated by the current model is about 10%
higher than that tested by Akagawa. The reason for this may be
that friction influence is neglected in current model. Since fluid
downstream the shock wave near the throat in the divergent sec-
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Fig. 10. Comparison between the pressure profiles calculated by current model
and calculated by IHE model.

tion is in non-homogeneous equilibrium (marked with ellipse in
Figs. 9 and 10), its behaviors are not investigated in this paper,
and the pressure at this section is assumed to be equal to the
pressure immediately downstream the shock wave. Therefore,
it distinctively deviates from Akagawa’s tested result.

The comparison of the pressure profiles calculated by cur-
rent model for different inlet subcooled degrees is shown in
Fig. 10. In order to explicitly illustrate the fluid behaviors, the
pressure profile calculated by IHE (Isentropic Homogeneous
Equilibrium) model is also shown in this figure. Compared with
the IHE model, there is a sudden pressure jump at the throat
which is resulted by the evaporation wave. The pressure at the
nozzle exit is higher than that calculated by IHE model, which
means that the velocity at the nozzle exit is lower than that cal-
culated by IHE model. This is because some available energy is
lost owing to the evaporation wave and the shock wave in the di-
vergent section. As the inlet subcooled degree is increased, the
pressure at the throat is decreased, but the pressure in the ho-
mogeneous region in the divergent section is increased, which
means that the exit velocity gets lower. The length of the non-
homogeneous equilibrium region is increased as the initially
inlet subcooled degree is increased. Therefore, in order to ob-
tain higher velocity at the convergent–divergent nozzle exit, the
length of the divergent section should be increased as the inlet
subcooled degree is increased.

4. Conclusion

The flashing flow behaviors of initially subcooled liquid
when it flows in convergent–divergent nozzles are investigated
in this paper. It is found that not only evaporation wave but also
shock wave occurs in nozzles, and non-homogeneous equilib-
rium region exists near the throat in the divergent section.

A model, in which the oblique evaporation wave theory and
the oblique shock wave theory are employed, is developed to
investigate the performance of convergent–divergent nozzles.
Numerical analysis is carried out. The results show that the
pressure at the throat is very close to the experimental re-
sult, about 4% deviation from Akagawa’s tested value. Owing
to the evaporation wave and the shock wave, the exit veloc-
ity is lower than that calculated by IHE model. The length
of the non-homogeneous equilibrium region in the divergent
section is increased as the initially inlet subcooled degree is
increased. The pressure profile predicted by the model agrees
very well with the tested profile of Akagawa except in the non-
homogeneous equilibrium region near the throat in the diver-
gent section.
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